

Schwerktraversen-Dehnfugen

...ein MAURER ehnfügensystem

MAURER-Modular-Dehnfugen

Bei der Konstruktion von Modular-Dehnfugen sind 4 Hauptanforderungen zu erfüllen:

- a) die Übertragung vertikaler und horizontaler Radlasten von den Mittelträgern in die beiden Bauwerksränder
- b) Die Steuerung der im Bauwerksspalt verschiebbar gelagerten Mittelträger in Abhängigkeit von der Spaltöffnung
- c) die wasserdichte, dauerhafte Verbindung zwischen den gummielastischen Dehnprofilen mit den Mittelträgern
- d) die sichere Verankerung der Randglieder der Dehnfugen im angrenzenden Bauwerksbeton

Die Anforderungen a) bis d) werden mit der MAURER-Trägerrost-Dehnfuge und der MAURER-Schwenktraversen-Dehnfuge auf unterschiedliche Art gelöst.

Bei der MAURER-Trägerrost-Dehnfuge wird jeder Mittelträger fest mit den ihm zugeordneten Traversen verschweißt. Es entsteht ein in sich verschiebbarer Trägerrost. Zwischen den Traversen angeordnete elastische Steuerfedern steuern den gleichmäßigen Abstand der Mittelträger untereinander in Abhängigkeit von der Spaltöffnung.

Bei der MAURER-Schwenktraversen-Dehnfuge werden die Mittelträger auf gemeinsamen, zueinander schräg angeordneten, schwenkbaren Traversen verschiebbar gelagert. Durch die besondere Art der Traversenanordnung sowie der Verbindung von Traverse und Mittelträger lassen sich die lastabtragede und die steuernde Funktion ohne eigenen Steuermechanismus in einfacher Weise erfüllen.

Das MAURER-Schwenktraversenprinzip ermöglicht durch entsprechende Anordnung der Traversenfestpunkte eine beliebige Aufteilung der Traversenverschiebungen (und damit kürzere oder längere Traversenkästen) auf die beiden Spaltränder.

Die Verwendung von für alle Mittelträger gemeinsamen Traversen läßt den Einsatz bis zu den im Brückenbau größtmöglichen Dehnwegen zu.

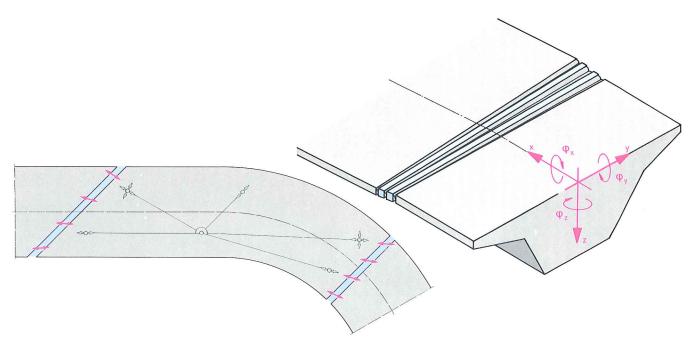
Durch die geringere Anzahl von Traversen wir die MAURER-Schwenktraversen-Dehnfuge bei großen Dehnwegen wirtschaftlicher als die MAURER-Trägerrost-Dehnfuge.

DS 720 B - Sinntalbrücke, BAB 7 Fulda - Würzburg

Hohe Anpassungsfähigkeit bei Verschiebungen bzw. Verdrehungen des Brückenbauwerks in x-, y- und z-Achsenrichtung. Dabei bleiben jedoch die übrigen Vorteile der MAURER-Trägerrost-Dehnfuge erhalten:

- wasserdichtes Verschließen der Spaltenöffnung durch formschlüssige Verbindung zwischen den Dichtprofilen und den Stahlprofilen,
- dauerhafte und dehnsteife Verankerung im Bauwerksbeton durch Verbundwirkung Stahl/Beton,
- übersichtliches statisches System, Bemessung unter Berücksichtigung der entsprechenden Vorschriften des Stahl- und Brückenbaus.
- kompakte Bauweise, niedrige Bauhöhe mit einer geringen Zahl von gegeneinander beweglichen Bauteilen,
- hoher Überfahrkomfort bei geringer Geräuschentwicklung.

MAURER-Schwenktraversen-Dehnfuge

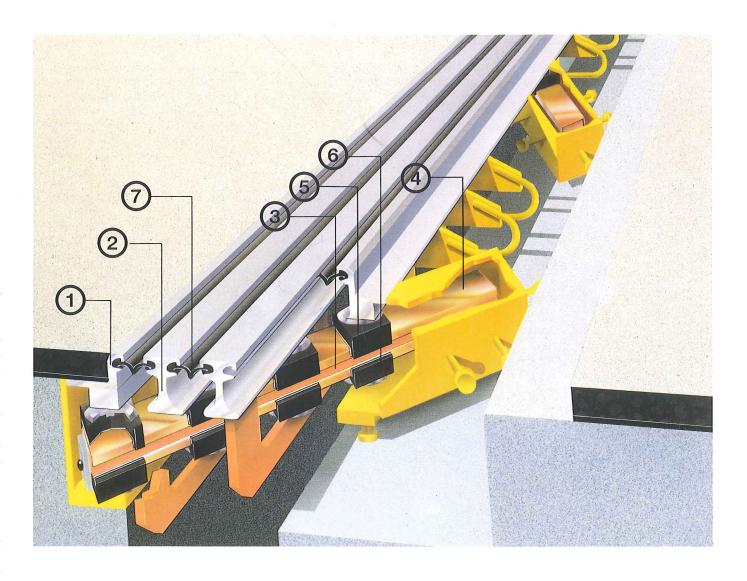

Aufgrund ihrer großen Anpassungsfähigkeit wird die MAURER-Schwenktraversen-Dehnfuge bevorzugt bei sehr großen und/oder komplexen Bewegungen des Brückentragwerks und bei beengten Platzverhältnissen der für die Verankerung der Dehnfugenkonstruktion zur Verfügung stehenden Bauwerksteile (z.B. Endquerträger) eingesetzt.

1. Große Bauwerksbewegungen

Bei sehr großen Bewegungen wird aus wirtschaftlichen Gründen der Einsatz der Schwenktraversen-Dehnfuge anstelle der Trägerrost-Dehnfuge bevorzugt.

2. Komplexe Bauwerksbewegungen

Wegen ihrer besonderen Kinematik wird die MAURER-Schwenktraversen-Dehnfuge auch bei polstrahlartigen Bewegungen des Dehnfugenrandes und bei komplexer Überlagerung von Verschiebungen und Verdrehungen in den drei Raumachsen x, y und z eingesetzt.



3. Beengte Platzverhältnisse

Am Beispiel des Austausches einer Mehrplattenkonstruktion gegen eine wasserdichte Lamellenfuge wird die vorteilhafte Verwendung einer MAURER-Schwenktraverse mit ihren nur auf einer Seite erforderlichen Traversenkästen veranschaulicht (Foto).

Die andere Seite ohne Traversenkästen wird im Brückenüberbau verankert, wo die Unterbringung von Traversenkästen wegen dort vorhandener Spannköpfe häufig nicht möglich ist. Ähnlich verhält es sich bei Stahlbrücken, wo der Einbau von Traversenkästen durch den Brückenendquerträger erschwert ist.

Hauptbauteile und Werkstoffe

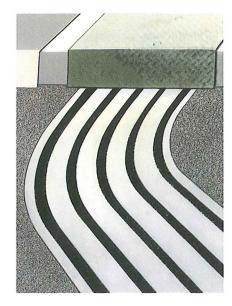
Sämtliche Bauteile sowie die Fertigung unterliegen einer regelmäßigen Qualitätskontrolle. Das Qualitäts-managementsystem entspricht DIN EN ISO 9001. Schwenktraversen-Dehnfugen sind regelgeprüft nach TL/TP-FÜ.

Der Fertigungsbetrieb verfügt über den Großen Eignungsnachweis für das Schweißen von Bauteilen und Konstruktionen aus Stahl nach DIN 18800 T.7 mit der Erweiterung auf das Schweißen von Bauteilen mit nicht vorwiegend ruhender Belastung nach DIN 4132, DIN 15018 und DS 804 sowie für das Schweißen nichtrostender Stähle und das Bolzenschweißen.

Hauptbauteile und Werkstoffe

Position	Bezeichnung Beschreibung										
1	3	Randträgerprofil	Warmgewalzte Profile aus RSt 37-2 mit engen Maßtoleranzen. Gute Schweißbarkeit und hohe Kerbschlagzähigkeit. Schweißstoß sowohl in der Werkstatt als auch auf der Baustelle möglich.								
2	3	Mittelträgerprofil	Warmgewalzte Profile aus St 52-3 mit engen Maßtoleranzen. Gute Schweißbarkeit und hohe Kerbschlagzähigkeit. Schweißstoß sowohl in der Werkstatt als auch auf der Baustelle möglich.								
3		Traverse	Warmgewalzt und mechanisch bearbeitet.								
4		Gleitblech	Nichtrostender Stahl in Brückenlagerqualität, Gleitflächen geschliffen und poliert. Werkstoff-Nr. 1.4401								
5		Gleitfeder	Naturkautschuk mit anvulkanisierten Stahlplatten. Gleitflächen aus hochbelastbarem Gleitwerkstoff.								
6		Gleitlager	Chloroprene-Kautschuk bewehrt mit anvulkanisierten Stahlplatten. Ausbildung entsprechend bewehrten Elastomerlagern nach DIN 4141, Teil 14. Gleitfläche aus hochbelastbarem Gleitwerkstoff.								
7	6	Dichtprofil	Chloroprene-Kautschuk oder EPDM mit hoher Weiterreißfestig- keit, salzwasser-, öl- und alterungsbeständig, in beliebigen Längen herstellbar. Heißvulkanisation auf der Baustelle möglich. Genügt Anforderungen der DIN 7865, Teil 2.								
8		Korrosionsschutz	Schutzbeschichtung unmittelbar nach vorheriger Strahl- entrostung gemäß spezifischen Anforderungen und geltenden Richtlinien.								

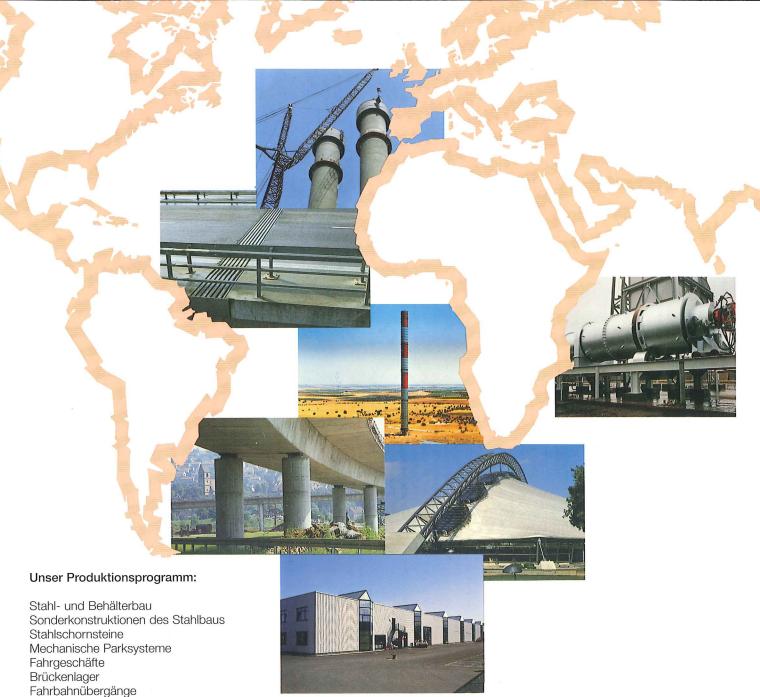
Detaillösungen

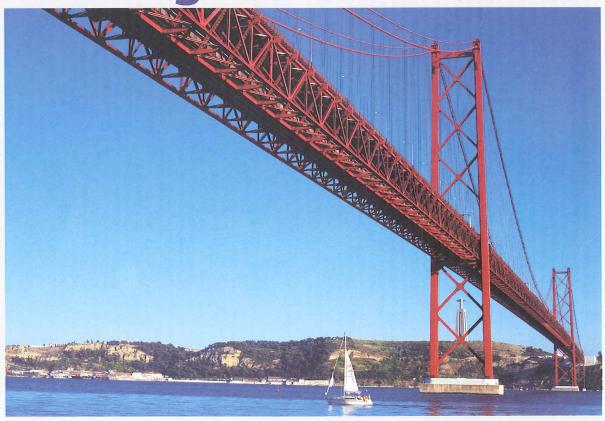

Ausführungsformen

Die hier gezeigten Abbildungen sollen die ästhetische und zweckmäßige Konstruktionsführung bei MAURER-Lamellen-Dehnfugen, besonders im Bereich von Gehwegen und Gesimskappen, bei Verzicht auf Blechabdeckungen verdeutlichen. Bekanntlich sind Abdeckbleche häufig Anlaß zu Beanstandungen wegen Klappergeräuschen und ihrer Anfälligkeit für Korrosionsbildung. Sie fördern die bleibende Unterwanderung von Wasser, Schmutz und Chloriden und verhindern die natürliche Witterungsbeaufschlagung auf den abgedeckten Konstruktionsteilen das ganze Jahr über. Deshalb empfehlen wir, auf Abdeckbleche generell zu verzichten (auch an den vertikalen Gesimsaußenflächen), da unsere MAURER-Dehnfugen ebenso in diesem Bereich durchgehend und wasserdicht bis Unterkante Gesims geführt werden können. Das Begehen der MAURER-Lamellen-Dehnfuge ohne Abdeckung stellt für den Fußgänger erwiesenermaßen keine Gefahr dar.

Wartung

Die MAURER-Schwenktraversen-Dehnfuge ist grundsätzlich wartungsfrei. Alle Kunststoffbauelemente einschließlich der Dichtprofile können jedoch mit einfachen Mitteln bei teilweiser Verkehrssperrung ausgetauscht werden. Wir empfehlen im Turnus von zwei Jahren eine Sichtprüfung vorzunehmen. Eine solche Überprüfung kann auch im Rahmen eines mit uns abgeschlossenen Inspektionsvertrages erfolgen.





Fahrbahnübergänge Umwelttechnische Anlagen

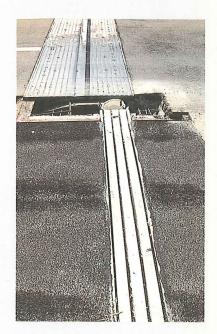
MAURER SÖHNE

MAURER Schwenktraversen-Dehnfugen

MAURER Schwenktraversen-Dehnfugen

Die MAURER Schwenktraversen-Dehnfuge ist eine Weiterentwicklung der Trägerrost-Dehnfuge und erweitert den Einsatzbereich der MAURER Modular-Dehnfugen wesentlich. Bei sehr großen und komplexen Brückenbewegungen wird aus geometrischen und auch wirtschaftlichen Gründen der Einsatz der MAURER Schwenktraversen-Dehnfuge bevorzugt.

Besonders geeignet ist sie auch bei beengten Platzverhältnissen, wie bei Stahlbrücken und beim Austausch von veralteten Mehrplattenkonstruktionen.

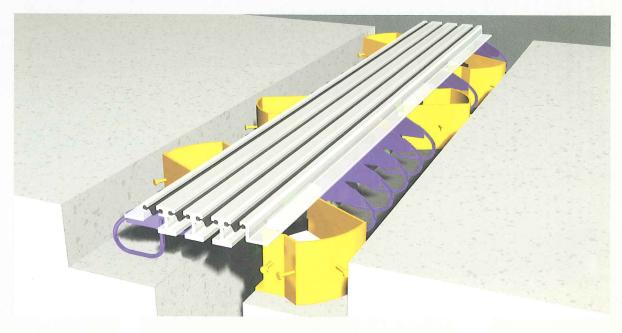

Wegen ihrer besonderen Kinematik paßt sich die MAURER Schwenktraversen-Dehnfuge stetig dem Verformungszustand des Bauwerks an. Sie ist nicht nur in der Lage, der Hauptbewegung der Brücke in Fahrbahnrichtung zu folgen, sondern auch ausgeprägten Bewegungen in beide Raumrichtungen senkrecht dazu. Auch Verdrehungen der Brücke um die drei Raumachsen folgt sie mühelos.

Die Randträger verlaufen parallel zu den Bauwerksrändern. Um Materialermüdung zu vermeiden, werden die Verkehrslasten über starr mit den Randträgern verbundenen Ankerscheiben in die angrenzende Stahlbetonkonstruktion weitergeleitet.

Zwischen den Randträgern befinden sich in Abhängigkeit von der Bewegungsgröße eine Vielzahl von Mittelträgern. Diese werden auf gemeinsamen, zueinander schräg angeordneten, schwenkbaren Traversen über elastische Gleitlager verschiebbar gelagert. Ein Abheben vom Gleitlager wird durch eine im Auflagerbügel unterhalb und im Traversenkasten oberhalb der Traverse angeordnete, vorgespannte Gleitfeder unterbunden. Stahlbügel sorgen für eine konstante, geometrisch kontrollierte Vorspannung.

Das die Übergangskonstruktion überrollende Rad gibt auf die Mittelträger vertikale und horizontale Lasten ab. Die infolge der exzentrisch angreifenden Radlasten erzeugten Schnittgrößen werden durch die Mittelträger als durchlaufende Balken mit weg- und drehelastischer Lagerung über vorgespannte Gleitlager auf die Traversen und von dort in den Bauwerksrand übertragen.

Das Bandwulst-Profil aus EPDM wird ohne zusätzliche Klemmleisten in klauenförmig ausgebildeten Hohlräumen der Rand- bzw. Mittelträger wasserdicht und gegen Herausziehen gesichert befestigt. Das Dichtprofil liegt tiefer als die Straßenoberfläche und ist daher vor dem unmittelbaren Kontakt mit Fahrzeugreifen bzw. Schneepflug geschützt. Die zulässige Horizontalverschiebung des Bandprofils in x-Richtung beträgt in der Regel 80 mm und wird durch einen mittels vorgeformter Gelenke im

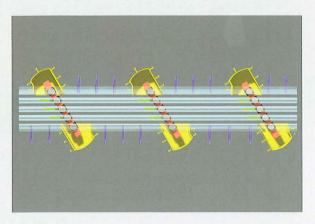


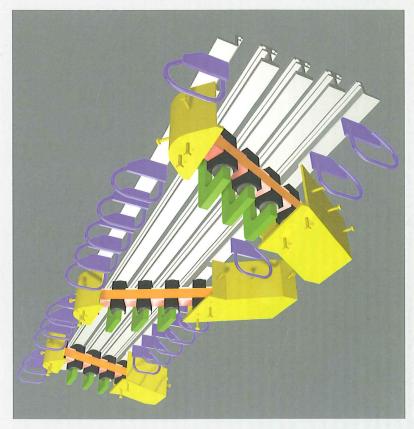
Austausch einer Rollverschluß-Konstruktion gegen eine Schwenktraversen-Dehnfuge

Dichtprofil gesteuerten Faltmechanismus ohne Aufbau wesentlicher Zugdehnungen ermöglicht.

Die Dehnfugen werden in gesamter Länge in die vorbereiteten Aussparungen eingebaut. Der Tragwerksanschluß ist nach den Regeln des Stahlbetonbaus bzw. des Stahlbaus auszuführen. Mit dem Anschluß der Bauwerksabdichtung und dem Aufbringen des Fahrbahnbelags ist der Einbau abgeschlossen.

Typ DS320 Traversenverschiebung beidseitig


Funktionsprinzipien


Typ DS320 Traversenverschiebung einseitig Unteransicht

Die Mittelträger der Schwenktraversen-Dehnfuge sind auf den Traversen mit Hilfe von Gleitlagern gelagert. Durch die geometrische Anordnung der Traversen wird die Stellung der Mittelträger so gesteuert, dass die gesamte Breite der Fugenöffnung gleichmäßig auf die Fugenspalte zwischen den Mittelträgern bzw. zwischen den Mittelträgern und Randträgern aufgeteilt wird.

Dieser einfache und doch wirkungsvolle Steuermechanismus ist ein bedeutender Vorteil der Schwenktraversen-Dehnfuge. Ohne zusätzliche Steuerungselemente und ohne Vorgabe einer definierten Bewegungsrichtung können Bewegungen zwängungsfrei aufgenommen und gleichzeitig Verkehrslasten abgetragen werden.

Bei großen Bewegungen werden die Traversen zur Vermeidung großer Stützweiten parallel angeordnet. In diesem Fall ist eine zusätzliche Führungstraverse erforderlich, oder es werden die Scharen paralleler Traversen in den beiden benachbarten Fahrtrichtungen zueinander geneigt angeordnet.

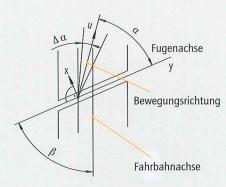
Die drehelastischen Lager ermöglichen horizontale und auch vertikale Verschiebungen des Bauwerks sowie Höhenversätze der Fugenränder bei Längsgefälle.

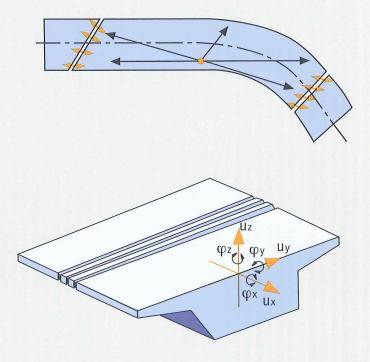
Die Traversenkästen dienen als Hohlräume für den Bewegungsablauf der verschieblich schwenkenden Traversen. Die Aufteilung der Bewegung auf die beiden Fugenränder ist beliebig. Häufig wird die Bewegung einseitig, z.B. am Widerlager aufgenommen, am gegenüberliegenden Rand ist die Traverse drehbar, aber unverschieblich gelagert.

Aus geometrischen Gründen, z.B. wegen vorhandener Spanngliederverankerungen, können die einseitig verschieblichen Traversen auch wechselseitig angeordnet werden.

Die Bewegung kann beliebig, z.B. zu gleichen Teilen auf die beiden Fugenränder aufgeteilt werden. Bei Stahlbrücken wird die Randkonstruktion auf Konsolen oder Unterstützungsträgern parallel zum Endquerträger gelagert. Im Regelfall werden die an der Randkonstruktion werkseitig befestigten Konsolenbleche mit dem stählernen Endquerträger verschweißt.

Durch die Verlagerung der Bewegung auf das gegenüberliegende Widerlager können die Exzentrizitäten der einzuleitenden Verkehrslasten auf ein Minimum reduziert werden.


Weil alle Mittelträger jeweils auf einer Traverse gemeinsam gelagert werden, kann der Fahrbahnübergang im Gegensatz zur Trägerrostfuge bis zu den im Brückenbau größtmöglichen Dehnwegen eingesetzt werden.


Anpassungsfähigkeit

MAURER Schwenktraversen-Dehnfugen können sämtliche im Brückenbau üblichen Bewegungen aufnehmen. Wegen der besonderen Kinematik werden sie auch bei polstrahlartigen Bewegungen des Überbaus und bei komplexer Überlagerung von Verschiebungen und Verdrehungen in den drei Raumachsen x, y und z eingesetzt.

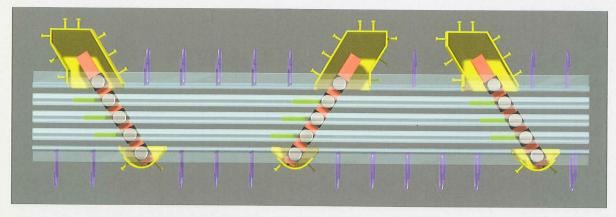
Die auf den folgenden Seiten angegebenen Aussparungsgrößen dienen als Bemessungshilfe für den Bauwerksplaner. Da die Aufteilung der Traversenverschiebung auf die beiden Fugenränder beliebig ist, können auch andere Lösungen gefunden werden. Sämtliche Maßangaben sind unverbindlich und werden im Ausführungsfall projektbezogen festgelegt.

Die im wesentlichen auf die Geometrie der Kästen und Traversen zurückzuführenden Einschränkungen können jederzeit durch Sonderausführungen verändert werden.

Wegen des hohen Standardisierungsaufwands wurden im Rahmen der Regelprüfung nach den TL/TP-FÜ nur häufig wiederkehrende Einsatzfälle berücksichtigt, siehe hierzu die zugehörigen Regelprüfungsunterlagen. Die zulässige Bewegung je Einzelspalt quer zur Fugenachse ist in Deutschland auf 65 mm eingeschränkt. Sämtliche Konstruktionen sind jedoch standardmäßig für eine Bewegung von 80 mm ausgelegt.

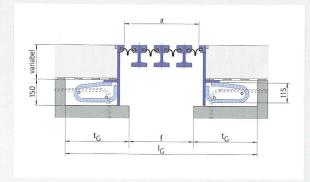
Die untenstehende Tabelle gibt die zulässigen Bewegungen je nach Konstruktionstyp bei Standardausführung wieder.

Тур	Gewicht	Тур	Gewicht
	[kg/m]		[kg/m]
DS160	270	DS720	930
DS240	350	DS800	1030
DS320	440	DS880	1140
DS400	530	DS960	1260
DS480	620	DS1040	1380
DS560	720	DS1120	1500
DS640	820	DS1200	1620

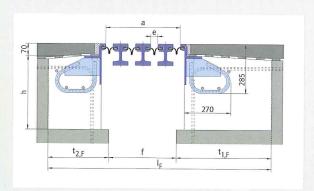

Die hier angegebenen Konstruktionsgewichte dienen zur näherungsweisen Auslegung der Transportfahrzeuge und Hebegeräte.

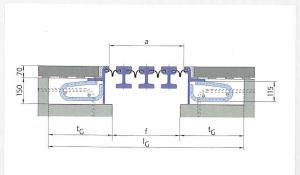

β
[°]
beliebig

^{*)} Werte gelten für Regelausführung, auch größere Werte sind möglich.


Traversenverschiebung einseitig

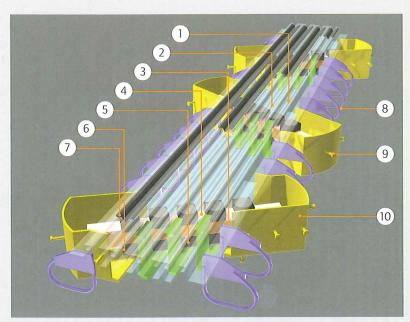
Aussparungsgrößen




Fahrbahnquerschnitt-Traversenbereich

Gehwegquerschnitt-Variante 1

Fahrbahnquerschnitt-Verankerungsbereich


Gehwegquerschnitt-Variante 2

	vorläufig angenommenes Einstellmaß e = 30 mm										
MAURER Konstruktion Dehnfuge		truktions	smaße	Auss	Beton- parungs	maße	Beton- Fugenmaße				
n	Тур	a b c [mm] [mm]			h [mm]	t _{1,F} [mm]	t _{2,F=} t _G [mm]	fmin [mm]	f _{max} [mm]	I _F	[mm]
2	DS160	150	260	290	420	400	350	115	130	865	815
3	DS240	270	310	300	430	450	380	225	250	1055	985
4	DS320	390	360	310	440	500	390	300	370	1190	1080
5	DS400	510	410	320	450	560	400	410	490	1370	1210
6	DS480	630	460	330	460	620	410	520	610	1550	1340
7	DS560	750	510	340	470	680	420	630	730	1730	1470
8	DS640	870	560	350	480	740	430	740	850	1910	1600
9	DS720	990	610	360	490	800	440	850	970	2090	1730
10	DS800	1110	660	370	500	860	450	960	1090	2270	1860
11	DS880	1230	710	380	510	920	460	1070	1210	2450	1990
12	DS960	1350	760	390	520	980	470	1180	1330	2630	2120
13	DS1040	1470	810	400	530	1040	480	1290	1450	2810	2250
14	DS1120	1590	860	410	540	1100	490	1400	1570	2990	2380
15	DS1200	1710	910	420	550	1160	500	1510	1690	3170	2510

Für Konstruktionen gemäß Richtlinie TL/TP-FÜ sind zusätzlich die Angaben in den Regelprüfungsunterlagen zu beachten.

- Alle Maße gelten rechtwinklig zur Fugenachse y.
- n = Anzahl der Dichtprofile
- a, f und l gelten für ein Einstellmaß e = 30 mm je Fugenspalt, sie sind bei abweichendem Maß e um n x Δe zu korrigieren.
- Aussparungen für Gehwegtraversen, Führungstraversen und Rohrdurchführungen erfordern im Regelfall eine Abstimmung zwischen Bauwerksplaner und Hersteller des Fahrbahnübergangs.
- Kleinere Aussparungen sind durch bauwerksspezifische Auslegung möglich.

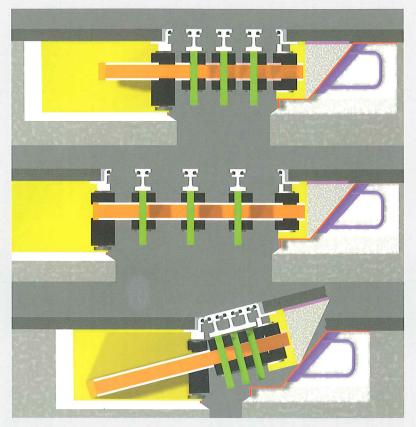
Konstruktionsprinzipien und Hauptbauteile

Regelprüfung und Fremdüberwachung nach TL/TP-FÜ

Qualität ist unser Ziel. Die laufende interne und externe Überwachung, der Einsatz hochwertiger Werkstoffe, eine Qualitätssicherung nach DIN EN ISO 9001 sowie ein Umweltmanagementsystem nach DIN EN ISO 14001 gewährleisten den hohen Qualitätsstandard von MAURER Schwenktraversen-Dehnfugen.

Als Konstruktionselemente für MAURER Dehnfugen werden nur hochwertige Werkstoffe eingesetzt. Sämtliche Kunststoffe sind alterungsbeständig, verschleißfest und weisen eine hervorragende Beständigkeit gegen Witterungs- und Umwelteinflüsse auf. Die Lagerungselemente relaxieren auch über einen Zeitraum von mehreren Jahrzehnten nur unbedeutend. Die Dichtprofile sind unempfindlich gegenüber mechanischen Beanspruchungen.

Bei der Wahl des Korrosionsschutzsystems sind nationale Vorschriften zu beachten. Wir empfehlen die Verwendung von Zwei-Komponenten-Zinkstaubfarbe als Grundbeschichtung und Eisenglimmer auf Epoxydharzbasis als Deckbeschichtung.


Bezeichnung	Beschreibung
Tragelemente	
1 Randträger	Warmgewalzte Profile aus S 235 JR G2 mit engen Maßtoleranzen. Gute Schweißbarkeit und hohe Kerb- schlagzähigkeit. Schweißstoß sowohl werkseitig als auch auf der Baustelle möglich.
2 Mittelträger	Warmgewalzte Profile aus S 355 J2 G3 mit engen Maßtoleranzen. Gute Schweißbarkeit und hohe Kerbschlagzähigkeit. Patentierter Schweißstoß sowohl in der Werkstatt als auch auf der Baustelle möglich.
3 Traverse	Aus Stahl S 355 J2 G3, mechanisch bearbeitet.
Lagerungselemente	
4 Gleitblech	Nichtrostender Stahl in Brückenlagerqualität, Werkstoff-Nr. 1.4401 Gleitflächen geschliffen und poliert.
5 Gleitfeder	Naturkautschuk mit anvulkanisierten Stahlplatten. Gleitflächen aus hochbelastbarem Gleitwerkstoff.
6 Gleitlager	Chloroprene-Kautschuk bewehrt mit anvulkanisierten Stahlplatten. Ausbildung entsprechend der Norm für bewehrte Elastomerlager DIN 4141, Teil 14. Gleitfläche aus hochbelastbarem Gleitwerkstoff.
Dichtelemente	
7 Bandprofil 80	EPDM oder Chloroprene-Kautschuk mit hoher Weiterreiß- festigkeit. Salzwasser-, öl- und alterungsbeständig. In beliebigen Längen herstellbar. Heißvulkanisation auf der Baustelle möglich.
Verankerungselemente	
8 Fahrbahnanker an den Randträgern	Flach- und Rundstahl aus S 235 JR G2
9 Kopfbolzendübel an den Traversenkästen	St37 K
10 Traversenkasten	S 235 JR G2, zur Aufnahme der Gleitlagerungs- und Steuerelemente sowie zur Freihaltung des erforderlichen Bewegungsspielraums der Traversen in den Fugenrändern.

MAURER Erdbeben-Dehnfugen

DS320 mit fuse box, maximal geöffnete Gebrauchsstellung (s=80 mm)

maximal geöffnete Erdbebenstellung (z.B.: s=150 mm)

> durch Erdbeben ausgelöste fuse box

Erdbeben können Bauwerksbewegungen hervorrufen, die erheblich größer, um ein Vielfaches schneller und bezüglich ihrer Richtung wesentlich komplexer sind als jene unter normalen Betriebsbedingungen. Deshalb ist für derartige Anwendungsfälle eine spezielle Anpassung der Dehnfugenkonstruktion erforderlich.

Während eines Erdbebens sind die konventionellen Anforderungen des Gebrauchszustands irrelevant. Wesentlich wird jedoch

- die Aufrechterhaltung der Bauwerksnutzbarkeit nach dem Beben zumindest für Notfahrzeuge sowie
- der Schutz des Bauwerks vor Anprallschäden durch schließende Bewegungen während des Bebens.

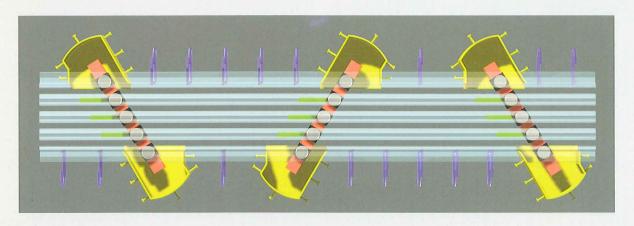
Konventionelle Dehnfugensysteme genügen diesen Anforderungen in der Regel nicht. Sie sind für Bewegungsgrößen und -richtungen des Gebrauchszustandes ausgelegt. Überschreitungen der zulässigen Einzelspaltweiten sind zwar während des Erdbebens unbedenklich, führen jedoch zur Zerstörung des Steuerungssystems, der mechanischen Spaltweitenbegrenzungen und der Tragelemente. Die während eines Erdbebens veränderte und undefinierte horizontale bzw. vertikale Bewegungsrichtung führt zum Blockieren und Zerstören der Konstruktion. Die hohen Beschleunigungen während des Bebens zerstören die Gleitlagerungselemente. Die Folge ist ein Nutzungsausfall der für Notdienste überlebenswichtigen Brücke.

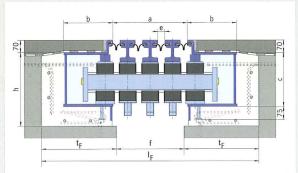
Die langjährig erprobte und sämtliche Gebrauchstauglichkeitsanforderungen erfüllende MAURER Schwenktraversen-Dehnfuge wurde derart weiterentwickelt, dass sie auch den vorgenannten Erdbebenanforderungen genügt.

a.) Allgemein

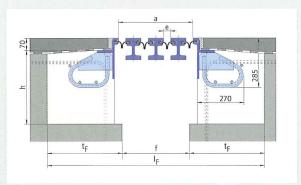
Für Erdbebenbeanspruchungen sind sichere und wirtschaftliche Lösungen gefragt. Die MAURER Erdbeben-Dehnfuge wird wie eine Schwenktraversen-Dehnfuge für den Gebrauchszustand dimensioniert und geometrisch den Erdbebenbewegungen angepaßt. Dadurch wird die Anzahl der Dichtprofile sowie der Verschleißteile und somit der Preis minimiert. Sämtliche Bewegungen werden zwängungs- und beschädigungsfrei aufgenommen.

b.) Bewegungsrichtung

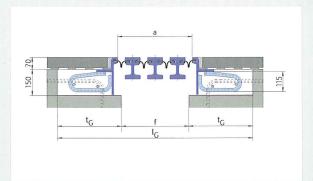

Lediglich geometrische Hindernisse im Traversenkasten schränken die Bewegungsrichtung ein. Einzigartig ist an der Schwenktraversen-Konstruktion jede Anpassung möglich.


c.) Beschleunigung

Konventionelle Modular-Dehnfugen werden durch hintereinandergeschaltete Federn gesteuert. Durch die Massenträgheit der Mittelträger kommt es bei Erdbebenbeschleunigungen zu unzulässigen Spaltweitenüberschreitungen und einer Zerstörung der Tragkonstruktion. Werden wiederum Spaltweitenbegrenzungen vorgesehen, ist die zulässige Öffnung der Dehnfuge auf den Gebrauchszustand beschränkt. Die Mittelträger von MAURER Erdbeben-Dehnfugen sind parallel geschaltet, das heißt, jeder Mittelträger bewegt sich unabhängig und demzufolge sind die zusätzlichen Auslenkungen gering.


Traversenverschiebung beidseitig

Aussparungsgrößen

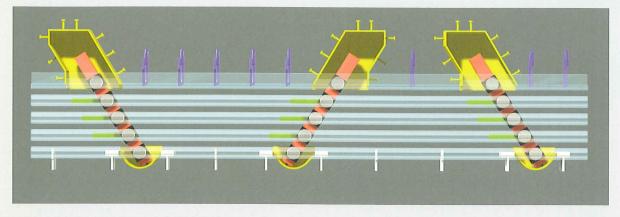


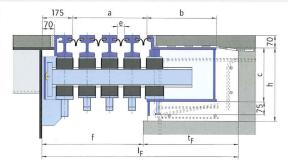
Fahrbahnquerschnitt-Traversenbereich

Gehwegquerschnitt-Variante 1

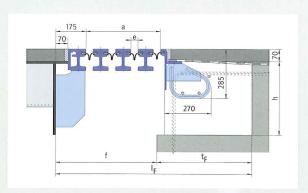
Fahrbahnquerschnitt-Verankerungsbereich

Gehwegquerschnitt-Variante 2

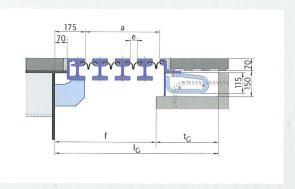

	vorläufig angenommenes Einstellmaß e = 30 mm											
MAURER Konstruktionsmaße Dehnfuge		maße	Beton- Aussparungsmaße			Beton- Fugenmaße						
n	Тур	a b c [mm] [mm]			h [mm]	t _F [mm]	t _G [mm]	f _{min} [mm]	f _{max} [mm]	I _F [mm]	IG [mm]	
2	DS160	150	215	290	420	350	350	115	130	815	815	
3	DS240	270	255	300	430	395	380	225	250	1015	985	
4	DS320	390	285	310	440	435	390	300	370	1170	1080	
5	DS400	510	355	320	450	510	400	410	490	1430	1210	
6	DS480	630	380	330	460	550	410	520	610	1620	1340	
7	DS560	750	410	340	470	590	420	630	730	1810	1470	
8	DS640	870	430	350	480	620	430	740	850	1980	1600	
9	DS720	990	460	360	490	660	440	850	970	2170	1730	
10	DS800	1110	490	370	500	690	450	960	1090	2340	1860	
11	DS880	1230	515	380	510	730	460	1070	1210	2530	1990	
12	DS960	1350	550	390	520	770	470	1180	1330	2720	2120	
13	DS1040	1470	585	400	530	820	480	1290	1450	2930	2250	
14	DS1120	1590	615	410	540	860	490	1400	1570	3120	2380	
15	DS1200	1710	645	420	550	900	500	1510	1690	3310	2510	


Für Konstruktionen gemäß Richtlinie TL/TP-FÜ sind zusätzlich die Angaben in den Regelprüfungsunterlagen zu beachten.

- Alle Maße gelten rechtwinklig zur Fugenachse y.
- n = Anzahl der Dichtprofile
- a, f und l gelten für ein Einstellmaß e = 30 mm je Fugenspalt, sie sind bei abweichendem Maß e um n x ∆e zu korrigieren.
- Aussparungen für Gehwegtraversen, Führungstraversen und Rohrdurchführungen erfordern im Regelfall eine Abstimmung zwischen Bauwerksplaner und Hersteller des Fahrbahnüber-
- Kleinere Aussparungen sind durch bauwerksspezifische Auslegung möglich.


Stahlanschluß

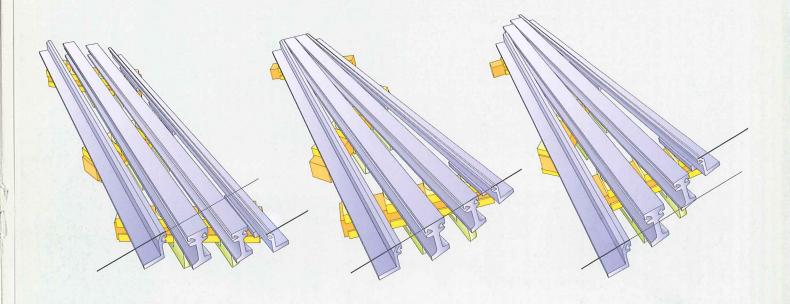
Aussparungsgrößen

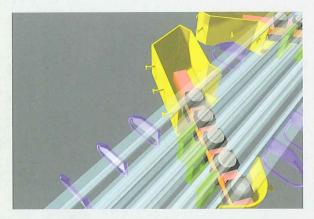


Fahrbahnquerschnitt-Traversenbereich

Gehwegquerschnitt-Variante 1

Fahrbahnquerschnitt-Verankerungsbereich

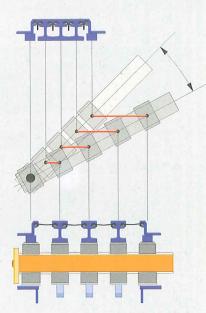

Gehwegquerschnitt-Variante 2


	vorläufig angenommenes Einstellmaß e = 30 mm											
	MAURER Konstruktionsmaße Dehnfuge			Beton- Aussparungsmaße			Beton- Fugenmaße					
n	Тур	a b c [mm] [mm]			h [mm]	t _F [mm]	t _G	f _{min} [mm]	f _{max} [mm]	l _F	IG [mm]	
2	DS160	150	260	290	420	400	385	300	310	700	685	
3	DS240	270	310	300	430	470	400	350	430	820	750	
4	DS320	390	360	310	440	540	410	460	550	1000	870	
5	DS400	510	410	320	450	610	425	570	670	1180	995	
6	DS480	630	460	330	460	680	440	680	790	1360	1120	
7	DS560	750	510	340	470	750	450	790	910	1540	1240	
8	DS640	870	560	350	480	820	470	900	1030	1720	1370	
9	DS720	990	610	360	490	890	480	1010	1150	1900	1490	
10	DS800	1110	660	370	500	960	500	1120	1270	2080	1620	
11	DS880	1230	710	380	510	1030	520	1230	1390	2260	1750	
12	DS960	1350	760	390	520	1100	530	1340	1510	2440	1870	
13	DS1040	1470	810	400	530	1170	550	1450	1630	2620	2000	
14	DS1120	1590	860	410	540	1240	560	1560	1750	2800	2120	
15	DS1200	1710	910	420	550	1310	570	1670	1870	2980	2240	

Für Konstruktionen gemäß Richtlinie TL/TP-FÜ sind zusätzlich die Angaben in den Regelprüfungsunterlagen zu beachten.

- Alle Maße gelten rechtwinklig zur Fugenachse y.
- n = Anzahl der Dichtprofile
- a, f und l gelten für ein Einstellmaß e = 30 mm je Fugenspalt, sie sind bei abweichendem Maß e um n x Δe zu korrigieren.
- Aussparungen für Gehwegtraversen, Führungstraversen und Rohrdurchführungen erfordern im Regelfall eine Abstimmung zwischen Bauwerksplaner und Hersteller des Fahrbahnübergangs.
- Kleinere Aussparungen sind durch bauwerksspezifische Auslegung möglich.

Die Steuerung von Schwenktraversen-Dehnfugen


Typ DS320 Traversenverschiebung einseitig Steuerung

Starre Steuerungen garantieren zwar eine exakte Aufteilung der Bewegung auf die Einzelspalte und weisen ein klar definiertes Tragsystem auf, sind jedoch anfällig für Zwängungen aus Bautoleranzen, Temperaturunterschieden zwischen den Bauteilen und Abweichungen von der planmäßigen Bewegungsrichtung. Die weder spielfreie noch elastisch vorgespannte Lagerung führt zu starker Lärmentwicklung und hohem Verschleiß. Aus diesem Grund werden moderne Modular-Dehnfugen ausschließlich elastisch

gesteuert. In der Regel werden Kunststofffedern eingesetzt, die durch Stauchung oder Schubverformung rückstellend wirken. Die einzelnen Mittelträger sind über diese Federkörper miteinander verbunden. Es ergeben sich mehrere nebeneinander angeordnete Ketten hintereinander geschalteter Federn. Die Steifigkeit der horizontalen Lagerung ist von der Anzahl der Mittelträger abhängig.

Eine Ausnahme bildet das System Schwenktraverse, bei welchem die Steuerung über geführte, schubelastische Drehgelenke erfolgt. Diese Konstruktion weist die Vorteile einer exakten Gestängesteuerung auf, kann jedoch durch die Schubelastizität Fertigungstoleranzen und Zwängungen kompensieren. Da jeder Mittelträger von den anderen unabhängig gesteuert wird, ist die Steifigkeit der horizontalen Mittelträgerlagerung unabhängig von der Anzahl der Dichtelemente. Es handelt sich somit um eine Steuerung mit parallelgeschalteten Federn.

Aufgrund der Überbaubewegung werden die Traversen durch die schwenkbaren Führungslager geschoben und verdrehen sich dabei. Die Schwenkbewegung bewirkt infolge

der festen Drehpunktabstände eine nahezu gleichmäßige Aufteilung der Bewegungen auf die einzelnen Dehnfugenspalte.

Für große und unregelmäßige Bewegungen (z.B. aus Erdbeben) gibt es zur MAURER Schwenktraversen-Dehnfuge keine Alternative.

d.) Öffnende Bewegungen

Während des Erdbebens kann die zulässige Spaltweite von in der Regel 80 mm überschritten werden. Die dem Strahlensatz folgenden Steuerungselemente ermöglichen jedweden Öffnungszustand der Dehnfuge. Durch eine entsprechende Längenanpassung der Traversen kann jeder beliebige Öffnungszustand schadfrei aufgenommen werden. Das Dichtprofil wird so angepaßt, dass es den kombinierten Erdbebenbewegungen ohne auszuknüpfen folgen kann. Wenn aus wirtschaftlichen Gründen der Arbeitsbereich des Dichtprofils eingeschränkt werden soll, so kann dasselbe nach dem Erdbeben mit einfachen Mitteln wieder positioniert werden.

e.) Schließende Bewegungen

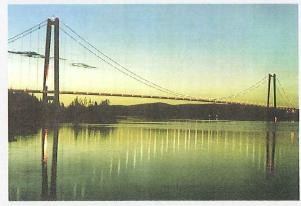
Schließt sich die Dehnfuge oder der Bauwerksspalt, kommt es zu Schäden oder dem Versagen des Bauwerks. Zum Schutz derselben hat Maurer Söhne zusätzlich zu der neuartigen Erdbeben-Dehnfuge auch eine sogenannte fuse box entwickelt. Schließt die Dehnfuge im Erdbebenfalle, werden Sollbruchstellen aktiviert. Die Verankerungskonstruktion entweicht bei einer definierten Versagenslast entlang einer Rampe und begibt sich nach dem Beben in ihre ursprüngliche Position. Anschläge bewirken eine temporäre Lagefixierung. Notfahrzeuge können die Konstruktion befahren, die Verankerung ist jedoch wiederherzustellen. Die Anwendung der fuse box führt fallweise zu einer beträchtlichen Reduzierung der erforderlichen Anzahl der Dichtprofile.

Universität Berkeley/Kalifornien Versuchseinrichtung

f.) Nachweis durch Versuche

Das Verhalten der MAURER Erdbeben-Dehnfugen wurde an der derzeit einzigen hierfür in Frage kommenden Universität von Berkeley/Kalifornien überprüft. Ein Versuchsmodell vom Typ DS560 im Maßstab 1:1 wurde mit Verschiebungen extrem hoher Geschwindigkeit und veränderlicher Richtung bei Simulation einer Vielzahl von aufgezeichneten Erdbebenzyklen beaufschlagt. Gleichzeitige Längs-

und Querverschiebungen von 1120 mm, gekoppelt mit einem Vertikalversatz von bis zu 6%, wurden bei resultierenden Ge-schwindigkeiten von bis zu ca. 1600 mm/s aufgebracht. Auch nach ca. 30 Vollbeben konnten keine Schäden festgestellt werden.


Brücken mit MAURER Schwenktraversen-Dehnfugenkonstruktionen

Vasco da Gama Brücke, Portugal mit fuse box für Erdbebenbewegung Baujahr: 1997 Schrägseilbrücke Hauptspannweite: 829 m Dehnfugentyp: 59,00 lfm DS1440

Storebælt Ostbrücke, Dänemark Baujahr: 1996 Hängebrücke Hauptspannweite: 1624 m Dehnfugentyp: 2 x DS2000 51,40 lfm 1 x DS1520 25,70 lfm 1 x DS960 25,70 lfm 1x DS800 25,70 lfm

Höga Kusten Brücke, Schweden Baujahr: 1997 Hängebrücke Hauptspannweite: 1210 m Dehnfugentyp: DS1840 36,80 m

Stura di Demonte, Italien Baujahr: 1999 Stahlverbundbrücke Brückenlänge: 2750 m Dehnfugentyp: DS1200 24,50 m

Maurer Söhne Stammhaus Frankfurter Ring 193, D-80807 München Postfach 44 0145, D-80750 München Telefon (0 89) 3 23 94-0 Telefax (0 89) 3 23 94-306

ba@mchn.maurer-soehne.de Internet www.maurer-soehne.de

Maurer Söhne Niederlassung Zum Holzplatz 2, D-44536 Lünen Postfach 63 40, D-44520 Lünen Telefon (02 31) 4 34 01-0 Telefax (02 31) 4 34 01-11

Maurer Söhne Zweigwerk Kamenzer Str. 4-6, D-02994 Bernsdorf Postfach 55, D-02992 Bernsdorf Telefon (03 57 23) 2 37-0 Telefax (03 57 23) 2 37-20